A Three-phased Online Association Rule Mining Approach for Diverse Mining Requests

نویسندگان

  • Ching-Yao Wang
  • Shian-Shyong Tseng
  • Tzung-Pei Hong
  • Yianshu Chu
چکیده

In the past, most incremental mining and online mining algorithms considered finding the set of association rules or patterns consistent with the entire set of data inserted so far. Users can not easily obtain the results from their only interested portion of data. For providing ad-hoc, query-driven and online mining supports, we first propose a relation called multidimensional pattern relation to structurally and systematically store the context information and the mining information for later analysis. Each tuple in the relation comes from an inserted dataset in the database. This concept is similar to the construction of a data warehouse for OLAP. However, unlike the summarized information of fact attributes in a data warehouse, the mined patterns in the multidimensional pattern relation can not be directly aggregated to satisfy users’ mining requests. We then develop an online mining approach called Three-phased Online Association Rule Mining (TOARM) based on the proposed multidimensional pattern relation to support online generation of association rules under multidimensional considerations. Experiments for both homogeneous and heterogeneous datasets are made, with results showing the effectiveness of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Extended Multidimensional Pattern Relation for Multidimensional On-line Mining

Although incremental data mining and online mining approaches are rather efficient, they usually can not flexibly obtain association rules or patterns from portions of data, diversely consider problems at different aspects, and provide on-line decision supports for users. In the past, we thus developed the multidimensional on-line mining approach to select and integrate related mining informati...

متن کامل

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Flexible online association rule mining based on multidimensional pattern relations

Most incremental mining and online mining algorithms concentrate on finding association rules or patterns consistent with entire current sets of data. Users cannot easily obtain results from only interesting portion of data. This may prevent the usage of mining from online decision support for multidimensional data. To provide ad-hoc, query-driven, and online mining support, we first propose a ...

متن کامل

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004